TCS+ talk

Wednesday December 13, 2017 10:00 AM

k-server via multiscale entropic regularization

Speaker: Sebastien Bubeck, Microsoft Research
Location: Annenberg 308

Abstract: I will start by describing how mirror descent is a natural strategy for online decision making, specifically in online learning and metrical task systems. To motivate the k-server problem I will also briefly recall what we know and what we don't know for structured state/action spaces in these models. Using the basic mirror descent calculations I will show how to easily obtain a log(k)-competitive algorithm for k-paging. I will then introduce our new parametrization of fractional k-server on a tree, and explain how to analyze the movement cost of entropy-regularized mirror descent on this parametrization. This leads to a depth*log(k)-competitive (fractional) algorithm for general trees, and log^2(k) for HSTs. I will also briefly mention dynamic embeddings to go beyond the standard log(n) loss in the reduction from general metrics to HSTs.

Joint work with Michael B. Cohen, James R. Lee, Yin Tat Lee, and Aleksander Madry.

Series TCS+ Talks

Contact: Bonnie Leung bjleung@caltech.edu