H.B. Keller Colloquium

Monday January 27, 2020 4:00 PM

Challenges in Reliable Machine Learning

Speaker: Kamalika Chaudhuri, Computer Science and Engineering, University of California, San Diego
Location: Annenberg 105

As machine learning is increasingly used in real applications, there is a need for reliable and robust methods. In this talk, we will discuss two such challenges that arise in reliable machine learning. The first is sample selection bias, where training data is available from a distribution conditioned on a sample selection policy, but the resultant classifier needs to be evaluated on the entire population. We will show how we can use active learning to get a small amount of labeled data from the entire population that can be used to correct this kind of sample selection bias. The second is robustness to adversarial examples -- slight strategic perturbations of legitimate test inputs that cause misclassification. We next look at adversarial examples in the context of a simple non-parametric classifier -- the k-nearest neighbor classifier, and look at its robustness properties. We provide bounds on its robustness as a function of k, and propose a more robust 1-nearest neighbor classifier.

Joint work with Songbai Yan, Tara Javidi, Yaoyuan Yang, Cyrus Rastchian, Yizhen Wang and Somesh Jha

Series H. B. Keller Colloquium Series

Contact: Diana Bohler at 6263951768 dbohler@caltech.edu