skip to main content
CMS/ACM/IDS 107 ab
Linear Analysis with Applications
12 units (3-0-9)  | first term
Prerequisites: ACM/IDS 104 or equivalent, Ma 1b or equivalent.

Part a: Covers the basic algebraic, geometric, and topological properties of normed linear spaces, inner-product spaces and linear maps. Emphasis is placed both on rigorous mathematical development and on applications to control theory, data analysis and partial differential equations. Topics: Completeness, Banach spaces (l_p, L_p), Hilbert spaces (weighted l_2, L_2 spaces), introduction to Fourier transform, Fourier series and Sobolev spaces, Banach spaces of linear operators, duality and weak convergence, density, separability, completion, Schauder bases, continuous and compact embedding, compact operators, orthogonality, Lax-Milgram, Spectral Theorem and SVD for compact operators, integral operators, Jordan normal form. Part b: Continuation of ACM 107a, developing new material and providing further details on some topics already covered. Emphasis is placed both on rigorous mathematical development and on applications to control theory, data analysis and partial differential equations.Topics: Review of Banach spaces, Hilbert spaces, Linear Operators, and Duality, Hahn-Banach Theorem, Open Mapping and Closed Graph Theorem, Uniform Boundedness Principle, The Fourier transform (L1, L2, Schwartz space theory), Sobolev spaces (W^s,p, H^s), Sobolev embedding theorem, Trace theorem Spectral Theorem, Compact operators, Ascoli Arzela theorem, Contraction Mapping Principle, with applications to the Implicit Function Theorem and ODEs, Calculus of Variations (differential calculus, existence of extrema, Gamma-convergence, gradient flows) Applications to Inverse Problems (Tikhonov regularization, imaging applications).

Instructor: Stuart