skip to main content

Special CMX Seminar

Tuesday, January 23, 2024
4:00pm to 5:00pm
Add to Cal
Annenberg 104
Four episodes of Kuramoto oscillators
Seung Yeal Ha, Professor of Mathematical Sciences, Department of Mathematical Sciences, Seoul National University,

In this talk, we discuss the state-of-the-art results on the emergent behaviors of the Kuramoto oscillators. In particular, we study relations between the finiteness of collisions and phase-locking of the Kuramoto model. When there is no inertial effect, it is well known that the finiteness of collisions is equivalent to the emergence of phase-locking. Thus, when a Kuramoto ensemble is under the effect of inertia, whether the same equivalence relation hold or not is an intricate question. In this talk, we show that in a small inertia regime, the aforementioned equivalence still holds, whereas in a large inertia regime, we show that a homogeneous Kuramoto ensemble with the same natural frequencies can exhibit phase-locking, while there are countable number of collisions between Kuramoto oscillators. This is a contrasted effect of a large inertia in phase-locking process.

This is a joint work with Hangjun Cho (SNU) and Jiu-Gang Dong (Dalian Univ. of Technology).

For more information, please contact Jolene Brink by phone at (626)395-2813 or by email at [email protected] or visit CMX Website.