TCS+ Talk
Abstract: Differential privacy (DP) is a model of privacy-preserving machine learning that has garnered significant interest in recent years due to its rigorous privacy guarantees. An algorithm differentially private if the output is stable under small changes in the input database. While DP has been adopted in a variety of applications, most applications of DP in industry actually satisfy a stronger notion called local differential privacy. In local differential privacy data subjects perturb their data before it reaches the data analyst. While this requires less trust, it comes a substantial cost to accuracy. Recent work of Erlingsson, Feldman, Mironov, Raghunathan, Talwar, and Thakurta [EFMRTT19] demonstrated that random shuffling amplifies differential privacy guarantees of locally randomized data. Such amplification implies substantially stronger privacy guarantees for systems in which data is contributed anonymously [BEMMRLRKTS17] and has led to significant interest in the shuffle model of privacy [CSUZZ19, EFMRTT19]. In this talk, we will discuss a new result on privacy amplification by shuffling, which achieves the asymptotically optimal dependence in the local privacy parameter. Our result is based on a new proof strategy which is simpler than previous approaches, and extends to a lightly weaker notion known as approximate differential privacy with nearly the same guarantees. Based on joint work with Vitaly Feldman and Kunal Talwar (https://arxiv.org/abs/2012.12803).
To watch the talk:
- Watching the live stream. At the announced start time of the talk (or a minute before), a live video stream will be available on our "next talk" page. Simply connect to the page and enjoy the talk. No webcam or registration is needed. Questions and comments during the talk are welcome (text only, unfortunately); simply post a comment below the live video stream on YouTube.
- Watching the recorded talk offline. The recorded talk will be made available shortly after the talk ends on our YouTube page. (Please leave a comment if you enjoyed it!)